Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Environ Res ; 245: 118022, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38151152

RESUMO

Cellulose that has been sourced from date palm leaves as a primary component was utilised. This cellulose served as the foundational material for the development of an aerogel composite. During this process, MXene (Ti3C2Tx) played a pivotal role in enhancing the overall composition of the aerogel. To ensure the stability and durability of the resulting aerogel structure, calcium ions were introduced to the mix. These ions facilitated the cross-linking process of sodium alginate molecules, ultimately leading to the formation of calcium alginate. This cross-linking step is crucial for the enhanced mechanical and chemical stability of the aerogel. Incorporating alginate and Ti3C2Tx into the cellulose aerogel enhanced its structural integrity in aqueous conditions and increased its adsorption capacity. When evaluated with synthetic wastewater, this composite exhibited remarkable adsorption capacities of 72.9, 114.4, 92.9, and 123.9 mg/g for As, Cd, Ni, and Zn ions, respectively. A systematic study was carried out to see the effect of various parameters, including contact time, MXene concentration, pH, and temperature on the adsorption of these elements. Peak adsorption was achieved at 60 min, favoring a pH range between 6 and 8 and exhibited optimal sorption efficiency at lower temperatures. The adsorption kinetics adhered closely to a pseudo-second-order, while the Freundlich model adeptly described the adsorption isotherms. An interesting result of this research was the aerogel's regenerative potential. After undergoing a basic acid treatment, the MXene/cellulose/alginate aerogel composite could be restored and reused for up to three cycles, all while maintaining its core performance capabilities even after the rigorous cross-linking processes. In three consecutive cycles, the removal percentages for As, Cd, Ni, and Zn were 48.15%, 80.38%, 56.51%, and 86.12% in cycle 1; 37.35%, 65.63%, 45.97%, and 78.42% in cycle 2; and 28.60%, 56.22%, 34.70%, and 65.83% in cycle 3, respectively. The composite was tested in conditions resembling seawater salinity. Impressively, the aerogel continued to demonstrate a significant ability to adsorb metals, reinforcing its potential utility in real-world aquatic scenarios. These findings suggest that the composite aerogel, integrating MXene, cellulose, and alginate, is an effective medium for the targeted removal of heavy metals from aquatic environments.


Assuntos
Metais Pesados , Nitritos , Phoeniceae , Elementos de Transição , Poluentes Químicos da Água , Águas Residuárias , Cádmio , Metais Pesados/química , Celulose/química , Água , Cinética , Adsorção , Alginatos/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
3.
ACS Omega ; 8(31): 28098-28108, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576687

RESUMO

The date palm (Phoenix dactylifera), a subtropical and tropical tree, included in the family Palmae (Arecaceae) is one of the oldest cultivated plants of mankind. Date palm is a major agricultural product in the semi-arid and arid areas of the world, particularly in Arab countries. These trees generate high quantities of agricultural waste in the form of dry leaves, seeds, etc. In this study, dried date palm leaves were used as green precursors for synthesizing graphene quantum dots (GQDs). This work reported the preparation of GQDs using two different sustainable methods. GQD-1 was developed using a simple, hydrothermal technique at 200 °C for 12 h in water, with no requirement of reducing or passivizing agents or organic solvents. GQD-2 was prepared using a hydrothermal technique at 200 °C for 12 h in water, with the usage of just distilled water and absolute ethanol. The compositional analysis of the leaf extract was performed, along with the morphological, compositional, and optical examination of the sustainably developed GQDs. The characterization results confirmed the successful formation of GQDs, with average sizes ranging from 3.5 to 8 nm. This study helps to obtain GQDs in an economical, eco-friendly, and biocompatible manner and can assist in large-scale production and in recycling date palm tree waste products from Middle East countries into value-added products.

4.
ACS Omega ; 8(21): 18930-18939, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273633

RESUMO

The date palm tree (Phoenix dactylifera L.) is the oldest cultivated tree and is very commonly seen in the Arab countries. In recent times, researchers are working on the conversion of the plant-based biowaste into value-added products. Cellulose is identified as one of the best options to be synthesized from plant-based materials due to its immense application possibilities. It is a natural hydrophilic polymer consisting of linear chains of 1,4-ß-d-anhydroglucose units, and the most used method for cellulose extraction is acidic hydrolysis. However, in this study, a very sustainable, ecofriendly, and simple process of isolating cellulose from date palm leaves is discussed. In this study, the best mechanical approach (ball milling, grinding, or its combination) for changing the leaves into powder form, as well as the sustainable and simple chemical extraction of cellulose from those date palm leaves, is analyzed. SEM analyses confirmed that the mechanical treatment process affected the appearance of the cellulose formed. Raman spectrum confirmed the difference in stretching vibrations among the cellulose obtained. From the results obtained, it was noted that cellulose derived utilizing the grinding technique and subsequent chemical treatment was considered as the finest cellulose prepared with respect to its properties and structure, and the greatest yield obtained for Cellulose 2 was 42%. As a future scope, this cellulose developed can be used to produce advanced materials like nanocellulose.

5.
Membranes (Basel) ; 13(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37233574

RESUMO

Worldwide water shortage and significant issues related to treatment of wastewater streams, mainly the water obtained during the recovery of oil and gas operations called produced water (PW), has enabled forward osmosis (FO) to progress and become advanced enough to effectively treat as well as retrieve water in order to be productively reused. Because of their exceptional permeability qualities, thin-film composite (TFC) membranes have gained increasing interest for use in FO separation processes. This research focused on developing a high water flux and less oil flux TFC membrane by incorporating sustainably developed cellulose nanocrystal (CNC) onto the polyamide (PA) layer of the TFC membrane. CNCs are prepared from date palm leaves and different characterization studies verified the definite formations of CNCs and the effective integration of CNCs in the PA layer. From the FO experiments, it was confirmed that that the membrane with 0.05 wt% of CNCs in the TFC membrane (TFN-5) showed better FO performance in PW treatment. Pristine TFC and TFN-5 membrane exhibited 96.2% and 99.0% of salt rejection and 90.5% and 97.45% of oil rejection. Further, TFC and TFN-5 demonstrated 0.46 and 1.61 LMHB pure water permeability and 0.41 and 1.42 LHM salt permeability, respectively. Thus, the developed membrane can help in overcoming the current challenges associated with TFC FO membranes for PW treatment processes.

6.
ACS Sens ; 8(6): 2179-2185, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37245157

RESUMO

More anomalous transport behaviors have been observed with the rapid progress in nanofabrication technology and characterization tools. The ions/molecules inside nanochannels can act dramatically different from those in the bulk systems and exhibit novel mechanisms. Here, we have reported the fabrication of a nanodevice, covalent organic frameworks covered theta pipette (CTP), that combine the advantages of theta pipette (TP), nanochannels framework, and field-effect transistors (FETs) for controlling and modulating the anomalous transport. Our results show that ammonia, a weak base, causes a continuous supply of ions inside covalent organic framework (COF) nanochannels, leading to an abnormally high current depending on the ionic/molecular size and the pore size of the nanochannel. Furthermore, CTP can distinguish different concentrations of ammonia and have all of the qualities of a nanosensor.


Assuntos
Amônia , Estruturas Metalorgânicas , Transporte de Íons , Íons , Projetos de Pesquisa
7.
ACS Sens ; 8(3): 1280-1286, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36920780

RESUMO

A reliable, rapid, cost-effective, and simple method for the detection of biomolecules would greatly promote the research of analytical detection of single molecules. A nanopore-based analytical technique is promising for detecting biomolecules. Conventional electrochemical nanopores cannot distinguish biomolecules precisely because of their fast translocation speed and limited electrochemical information. Therefore, it is highly desirable to develop electrochemical surface-enhanced Raman scattering (SERS) nanopores to obtain multidimensional information. Herein, we designed and fabricated gold nanotriangle (AuNT)-assembled porous structures at the tip of a glass capillary using dithiol adenosine triphosphate (ATP) aptamers as cross-linking molecules. The AuNTs exhibited an edge length of 57.3 ± 6.2 nm and thickness of about 15 nm. The gold nanoporous structure (GPS) showed a strong ion rectification even at a high concentration of electrolyte (2 M) and a high SERS activity. Based on these designed structures, SERS and electrochemistry techniques were combined to control the rapid movement of ATP to the vicinity of the GPS by an applied potential of +1 V, where ATP was concentrated by ATP aptamers and the molecular signals were amplified by SERS. As a result, the GPS successfully detected ATP at a concentration as low as 10-7 M.


Assuntos
Nanopartículas Metálicas , Nanoporos , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Ouro/química , Trifosfato de Adenosina/química , Oligonucleotídeos
8.
Nano Lett ; 23(7): 2586-2592, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36942994

RESUMO

Direct structural and dynamic characterization of protein conformers in solution is highly desirable but currently impractical. Herein, we developed a single molecule gold plasmonic nanopore system for observation of protein allostery, enabling us to monitor translocation dynamics and conformation transition of proteins by ion current detection and SERS spectrum measurement, respectively. Allosteric transition of calmodulin (CaM) was elaborately probed by the nanopore system. Two conformers of CaM were well-resolved at a single-molecule level using both the ion current blockage signal and the SERS spectra. The collected SERS spectra provided structural evidence to confirm the interaction between CaM and the gold plasmonic nanopore, which was responsible for the different translocation behaviors of the two conformers. SERS spectra revealed the amino acid residues involved in the conformational change of CaM upon calcium binding. The results demonstrated that the excellent spectral characterization furnishes a single-molecule nanopore technique with an advanced capability of direct structure analysis.


Assuntos
Ouro , Nanoporos , Ouro/química , Análise Espectral Raman/métodos , Proteínas , Aminoácidos
9.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500777

RESUMO

Forward osmosis (FO) technology for desalination has been extensively studied due to its immense benefits over conventionally used reverse osmosis. However, there are some challenges in this process such as a high reverse solute flux (RSF), low water flux, and poor chlorine resistance that must be properly addressed. These challenges in the FO process can be resolved through proper membrane design. This study describes the fabrication of thin-film composite (TFC) membranes with polyethersulfone solution blown-spun (SBS) nanofiber support and an incorporated selective layer of graphene quantum dots (GQDs). This is the first study to sustainably develop GQDs from banyan tree leaves for water treatment and to examine the chlorine resistance of a TFC FO membrane with SBS nanofiber support. Successful GQD formation was confirmed with different characterizations. The performance of the GQD-TFC-FO membrane was studied in terms of flux, long-term stability, and chlorine resistance. It was observed that the membrane with 0.05 wt.% of B-GQDs exhibited increased surface smoothness, hydrophilicity, water flux, salt rejection, and chlorine resistance, along with a low RSF and reduced solute flux compared with that of neat TFC membranes. The improvement can be attributed to the presence of GQDs in the polyamide layer and the utilization of SBS nanofibrous support in the TFC membrane. A simulation study was also carried out to validate the experimental data. The developed membrane has great potential in desalination and water treatment applications.

10.
Nanomaterials (Basel) ; 12(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36234646

RESUMO

The major challenges in forward osmosis (FO) are low water flux, high specific reverse solute flux (SRSF), and membrane fouling. The present work addresses these problems by the incorporation of graphene quantum dots (GQDs) in the polyamide (PA) layer of thin-film composite (TFC) membranes, as well as by using an innovative polyethersulfone nanofiber support for the TFC membrane. The GQDs were prepared from eucalyptus leaves using a facile hydrothermal method that requires only deionized water, without the need for any organic solvents or reducing agents. The nanofiber support of the TFC membranes was prepared using solution blow spinning (SBS). The polyamide layer with GQDs was deposited on top of the nanofiber support through interfacial polymerization. This is the first study that reports the fouling resistance of the SBS-nanofiber-supported TFC membranes. The effect of various GQD loadings on the TFC FO membrane performance, its long-term FO testing, cleaning efficiency, and organic fouling resistance were analyzed. It was noted that the FO separation performance of the TFC membranes was improved with the incorporation of 0.05 wt.% GQDs. This study confirmed that the newly developed thin-film nanocomposite membranes demonstrated increased water flux and salt rejection, reduced SRSF, and good antifouling performance in the FO process.

11.
Anal Chem ; 94(32): 11224-11229, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35917478

RESUMO

A crack-free micrometer-sized compact structure of 1,3,5-tris(4-aminophenyl)benzene-terephthaldehyde-covalent organic frameworks (TAPB-PDA-COFs) was constructed in situ at the tip of a theta micropipette (TMP). The COF-covered theta micropipette (CTP) then created a stable liquid-gas interface inside COF nanochannels, which was utilized to electrochemically analyze the content and distribution of ammonia gas in the microenvironments. The TMP-based electrochemical ammonia sensor (TEAS) shows a high sensing response, with current increasing linearly from 0 to 50,000 ppm ammonia, owing to the absorption of ammonia gas in the solvent meniscus that connects both barrels of the TEAS. The TEAS also exhibits a short response and recovery time of 5 ± 2 s and 6 ± 2 s, respectively. This response of the ammonia sensor is remarkably stable and repeatable, with a relative standard deviation of 6% for 500 ppm ammonia gas dispensing with humidity control. Due to its fast, reproducible, and stable response to ammonia gas, the TEAS was also utilized as a scanning electrochemical microscopy (SECM) probe for imaging the distribution of ammonia gas in a microspace. This study unlocks new possibilities for using a TMP in designing microscale probes for gas sensing and imaging.


Assuntos
Estruturas Metalorgânicas , Amônia/química , Umidade , Estruturas Metalorgânicas/química , Solventes
12.
Anal Chem ; 94(27): 9851-9855, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35758157

RESUMO

Ultrathin nanosheets of two-dimensional covalent organic frameworks covered a quartz nanopipette and then acted as a nanopore device for single-molecule DNA sensing. Our results showed that a single DNA homopolymer as short as 6 bases could be detected. The dwell times of 30-mer DNA homopolymers were obviously longer than the times of 10- or 6-mer ones. For different bases, poly(dA)6 showed the slowest transport speed (∼595 µs/base) compared with cytosine (∼355 µs/base) in poly(dC)6 and thymine (∼220 µs/base) in poly(dT)6. Such translocation speeds are the slowest ever reported in two-dimensional material-based nanopores. Poly(dA)6 also showed the biggest current blockade (94.74 pA) compared with poly(dC)6 (79.54 pA) and poly(dT)6 (71.41 pA). However, the present difference in blockade current was not big enough to distinguish the four DNA bases. Our study exhibits the shortest single DNA molecules that can be detected by COF nanopores at the present stage and lights the way for DNA sequencing based on solid-state nanopores.


Assuntos
Estruturas Metalorgânicas , Nanoporos , DNA , Nanotecnologia , Poli A , Análise de Sequência de DNA/métodos
13.
Membranes (Basel) ; 12(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35629789

RESUMO

Membrane-based desalination has proved to be the best solution for solving the water shortage issues globally. Membranes are extremely beneficial in the effective recovery of clean water from contaminated water sources, however, the durability as well as the separation efficiency of the membranes are restricted by the type of membrane materials/additives used in the preparation processes. Nanocellulose is one of the most promising green materials for nanocomposite preparation due to its biodegradability, renewability, abundance, easy modification, and exceptional mechanical properties. This nanocellulose has been used in membrane development for desalination application in the recent past. The study discusses the application of membranes based on different nanocellulose forms such as cellulose nanocrystals, cellulose nanofibrils, and bacterial nanocellulose for water desalination applications such as nanofiltration, reverse osmosis, pervaporation, forward osmosis, and membrane distillation. From the analysis of studies, it was confirmed that the nanocellulose-based membranes are effective in the desalination application. The chemical modification of nanocellulose can definitely improve the surface affinity as well as the reactivity of membranes for the efficient separation of specific contaminants/ions.

14.
Nano Lett ; 22(3): 1358-1365, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080401

RESUMO

We explored the application of two-dimensional covalent organic frameworks (2D COFs) in single molecule DNA analysis. Two ultrathin COF nanosheets were exfoliated with pore sizes of 1.1 nm (COF-1.1) and 1.3 nm (COF-1.3) and covered closely on a quartz nanopipette with an orifice of 20 ± 5 nm. COF nanopores exhibited high size selectivity for fluorescent dyes and DNA molecules. The transport of long (calf thymus DNA) and short (DNA-80) DNA molecules through the COF nanopores was studied. Because of the strong interaction between DNA bases and the organic backbones of COFs, the DNA-80 was transported through the COF-1.1 nanopore at a speed of 270 µs/base, which is the slowest speed ever observed compared with 2D inorganic nanomaterials. This study shows that the COF nanosheet can work individually as a nanopore monomer with controllable pore size like its biological counterparts.


Assuntos
Estruturas Metalorgânicas , Nanoporos , DNA , Corantes Fluorescentes
15.
Nanomaterials (Basel) ; 13(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616057

RESUMO

Over the past several years, graphene quantum dots (GQDs) have been extensively studied in water treatment and sensing applications because of their exceptional structure-related properties, intrinsic inert carbon property, eco-friendly nature, etc. This work reported on the preparation of GQDs from the ethanolic extracts of eucalyptus tree leaves by a hydrothermal treatment technique. Different heat treatment times and temperatures were used during the hydrothermal treatment technique. The optical, morphological, and compositional analyses of the green-synthesized GQDs were carried out. It can be noted that the product yield of GQDs showed the maximum yield at a reaction temperature of 300 °C. Further, it was noted that at a treatment period of 480 min, the greatest product yield of about 44.34% was attained. The quantum yields of prepared GQDs obtained after 480 min of treatment at 300 °C (named as GQD/300) were noted to be 0.069. Moreover, the D/G ratio of GQD/300 was noted to be 0.532 and this suggested that the GQD/300 developed has a nano-crystalline graphite structure. The TEM images demonstrated the development of GQD/300 with sizes between 2.0 to 5.0 nm. Furthermore, it was noted that the GQD/300 can detect Fe3+ in a very selective manner, and hence the developed GQD/300 was successfully used for the metal ion sensing application.

16.
Anal Chem ; 93(34): 11679-11685, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34415740

RESUMO

Probing the orientation and oxygenation state of single molecules (SMs) is of great importance for understanding the advanced structure of individual molecules. Here, we manipulate molecules transporting through the hot spot of a sub-10 nm conical gold nanopore and acquire the multidimensional structural information of the SMs by surface enhanced Raman scattering (SERS) detection. The sub-10 nm size and conical shape of the plasmonic nanopore guarantee its high detection sensitivity. SERS spectra show a high correlation with the orientations of small-sized single rhodamine 6G (R6G) during transport. Meanwhile, SERS spectra of a single hemoglobin (Hb) reveal both the vertical/parallel orientations of the porphyrin ring and oxygenated/deoxygenated states of Hb. The present study provides a new strategy for bridging the primary sequence and the advanced structure of SMs.


Assuntos
Nanopartículas Metálicas , Nanoporos , Ouro , Nanotecnologia , Análise Espectral Raman
17.
Anal Chem ; 93(3): 1409-1415, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33347748

RESUMO

Plasmonic materials with highly confined electromagnetic fields at resonance wavelengths have been widely used to enhance Raman scattering signals. To achieve the maximum enhancement, the resonance peaks of the plasmonic materials should overlap with the excitation and emission wavelengths of target molecules, which is difficult for most of the plasmonic materials possessing a few narrow resonance peaks. Here, we report an ultrabroadband plasmonic metamaterial absorber (BPMA) that can absorb 99% of the incident light energy and excite plasmon resonance from the ultraviolet to near-infrared range (250-1900 nm), which allows us to observe efficient plasmon-enhanced Raman scattering (PERS) with any excitation sources. As demonstrated by the investigation on a self-assembled monolayer of the nonresonant molecule 4-mercaptobenzonitrile, the BPMA exhibits high PERS performance with a detection limit of down to 10-12 M under any excitation sources of three different lasers and excellent uniformity (∼5.51%) and reproducibility (∼5.50%), which corroborates the potential for high-throughput production with low cost and at a large scale. This work offers a novel platform for anti-interference PERS analysis in dynamic and complex environments.

18.
Chemistry ; 26(57): 12996-13001, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32333483

RESUMO

Layered/two-dimensional covalent organic frameworks (2D COF) are crystalline porous materials composed of light elements linked by strong covalent bonds. Interlayer force is one of the main factors directing the formation of a stacked layer structure, which plays a vital role in the stability, crystallinity, and porosity of layered COFs. The as-developed new way to modulate the interlayer force of imine-linked 2D TAPB-PDA-COF (TAPB = 1,3,5-tris(4-aminophenyl)benzene, PDA = terephthaldehyde) by only adjusting the pH of the solution. At alkaline and neutral pH, the pore size of the COF decreases from 34 Šdue to the turbostratic effect. Under highly acidic conditions (pH 1), TAPB-PDA-COF shows a faster and stronger turbostratic effect, thus causing the 2D structure to exfoliate. This yields bulk quantities of an exfoliated few/single-layer 2D COF, which was well dispersed and displayed a clear Tyndall effect (TE). Furthermore, nanopipette-based electrochemical testing also confirms the slipping of layers with increase towards acidic pH. A model of pH-dependent layer slipping of TAPB-PDA-COF was proposed. This controllable pH-dependent change in the layer structure may open a new door for potential applications in controlled gas adsorption/desorption and drug loading/releasing.

19.
Anal Chem ; 92(10): 7343-7348, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32337983

RESUMO

Covalent organic frameworks (COFs) consist nanochannels that are fundamentally important for their application. Up to now, the effect of gas phase on COF nanochannels are hard to explore. Here, TAPB-PDA-COFs (triphenylbenzene-terephthaldehyde-COFs) was synthesized in situ at the tip of a theta micropipette. The COF-covered theta micropipette (CTP) create a stable gas-liquid interface inside the COF nanochannels, through which the humidity-modulated ion mass transfer in the COF nanochannels can be recorded by recording the current across the two channels of the theta micropipette. Results show that the humid air changes the mobility of the ions inside the COF nanochannels, which leads to the change of ionic current. Humid air showed different effects on the ion transfer depending on the solvent polarity index and vapor pressure. Current decreases linearly with the increase of relative humidity (RH) from 11% to 98%. The CTP was also mounted on the scanning electrochemical microscopy as a probe electrode for mapping micrometer-scale humidity distribution.

20.
Chem Commun (Camb) ; 55(45): 6397-6400, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31094376

RESUMO

A single gold nanopore with high surface enhanced Raman spectroscopy (SERS) activity is fabricated on the tip of a glass nanopipette. Polystyrene (PS) nanospheres can be recognized from the SERS spectrum while passing through the single nanopore.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA